
  

  

Abstract—Autonomous vehicles are becoming a thing of the 
present, it’s not just science fiction anymore and one major 
task they must be able to do to become fully integrated in 
society is lane navigation. Lane navigation is often done with 
cameras, although it can be done with LIDAR’s that provide an 
intensity reading. In this project, I present three different 
approaches to vision based lane navigation using supervised 
learning, SVM, and unsupervised learning.  

 The three different learning algorithms all return the 
same information, that being the location of the lane. The edge 
information obtained from the image is then passed to a free 
space path planner. This planner will drive towards the largest 
open space in front of it that is also in the direction of its goal.  

 The experiments carried out are based on the 
Minesweeper Nero platform and were conducted at the same 
location on several different days.  
 

I. INTRODUCTION 
utonomous driving vehicles have become 
more and more prevalent ever since the 

DARPA Grand Challenge. The first few vehicles 
were dependent on precise data provided by 
specialty sensors. However since those first few 
vehicles the interpretation of noisy data has 
become increasingly better and thus opened up a 
whole new array of sensors that can be used. The 
monocular camera has emerged as one of the top 
sensors for autonomous vehicles. From its images 
many helpful cues can be derived.  

 For example, Figure 1, a bird’s eye view of an 
intersection gives a good idea of how many visual 
cues we rely upon while driving. There are 
crosswalks, stoplights, road dividers and lane lines 
to name a few. I will be focusing on the detection 
of lane lines in a less structured environment than 
what is typically found on roads. Instead of lanes 
on roads I will be looking at lanes painted on 
grass. This is similar to a road but the overall 
texture and color of grass can vary more than 
asphalt.  

 In this project, I tackled the lane detection 
problem through several learning methods to 
evaluate which is the best method to use. The 

 
 

methods used are a supervised learning, support 
vector machines, unsupervised learning.  

The paper is organized as follows. After 
discussing related work in Section II, I briefly 
describe the robot that was used for this paper in 
Section III. In Section IV I discuss the three 
learning methods that were applied. Section V 
presents the experimental results of the three 
learning algorithms. Lastly, I conclude in section 
VI and give a few proposed solutions to problems 
that arose.  

II. RELATED WORK  
Lane navigation is one of the basic problems of 

robot navigation and there are many discussions 
about the issue in robotics literature. In [3] the 
lane is detected in real time by first taking a 
threshold of the image and then using an equation 
specific to their situation to pick out the lane based 
on its perspective geometry. This lacks the 
generality needed for use in other platforms and 
the algorithm would not be able to perform well if 
the camera’s position was changed. In [4] the 
robot follows the curvature of a line on the ground 
to simulate the following of road curvature.  
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Fig. 1. Bird’s eye view of a typical intersection 
 



  

 Our approach to supervised learning approach to 
lane detection is very similar to the algorithm used 
in [3].  The main difference being that we used 
supervised learning to determine the parameters of 
the algorithm instead of estimating them for our 
setup. This was done to increase the robustness of 
the algorithm and to fit the parameters of the 
algorithm to our specific robot.  
 In [6] the curvature of the road is obtained by 
using a Support Vector Machine (SVM) to 
classify what is part of the road and what is not. 
They then broke the image into horizontal 
sections. The centroid of the road sections in each 
section was found and then SVM regression was 
performed on the centroid locations to get the road 
curvature.  This approach is very similar to the 
SVM approach that was used for this project. 

III. THE ROBOT 
Nero V2.0 is a differential drive robot designed 
for competition in the Intelligent Ground Vehicle 
Competition (IGVC). The purpose of Nero V2.0 is 
to be a software test platform and thus is not 
mechanically complex.  
 However, the sensor suite that has been 
developed on Nero is extensive. Nero has a SICK 
LIDAR with a range of 30m, and a color camera 
with 45degree field of view, delivered at 15 
frames per second. Also, each wheel has three 
hall-effect sensors that act as wheel encoders to 
provide odometry data.  To complement the wheel 
encoders and to compensate for any situation in 
which the wheels might slip, there is a 6 DOF 
IMU paired with GPS that provides hardware 
Kalman Filtered position and velocity. Lastly, all 
of the sensors are tied together using the ROS 
architecture to allow the development of 
navigation algorithms that work on multiple 
platforms.  
 However, for this project the most important 
sensor is the camera. It runs at a very low 
resolution: 160x120. This is to keep the bandwidth 
down and to get rid of any fine edges. Placement 
of the camera can be seen in figure 2.  
 

IV. LANE DETECTION METHODS 
The goal of this work is to learn the pattern or 

shape that best describes the lane lines in an 
image. The following methods all work on the 
same basic algorithm. First, classify pixels as part 
of the lane. Next, fit a line or a curve to the pixels 
that were classified as lane lines. Lastly, the line is 
passed to the free space follower that is 
implemented on the robot.  

A. Supervised Learning 
The lanes are detected using the same approach 

as in [3]. First, the image is filtered using a median 
filter (figure 3(b)) to remove any outlier noise in 
the image. Then a threshold is applied to the 
image to make sure that only things that are bright 
and white are included. Taking the threshold of 
the image leaves a speckled image as in figure 
3(c).  Then each line of the speckled image is 
scanned to determine the width of contiguous 
segments of white in the binary image (figure 
3(d)). If the width of the segment is approximately 
the same as an expected width of the lane then the 
contiguous white segment is kept in the image, 
otherwise it is removed. The expected width is 
calculated using parameters learned from more 
than 100 training images for equation 1.  
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Fig. 2. Nero V2.0 



  

 Once all of the horizontal lines have been 
scanned there is a group of pixels left that are 
considered to be part of the lane line. A linear 
regression is performed on the lines to provide the 
x-intercept and slope of the line (figure 3(e)).  
 The supervised learning process consisted of 
labeling all of the lanes in the image, detecting the 
lines using the stated algorithm, and then 
determining the error of the estimated line. The 
lines were identified by their x-intercept, slope and 
their angle. The angle and slope were both 
recorded because as the line nears 90 degrees the 
slope goes to infinity. Several error metrics were 
tested: intercept error, angle error, and the distance 
between 8 x positions for the two lines.  
 The parameters that had to be learned were 
initial, h1 and h2 of (1). They were learned using a 
brute force algorithm followed by a gradient 
descent. The brute force algorithm was very rough 
and was implemented to make sure that the 

gradient descent did not get trapped in a local 
minimum. The gradient descent was run 
afterwards to refine the parameters. 

B. Support Vector Machine 
For this approach the Support Vector Machine 

(SVM) was used to perform pattern recognition. 
The method outlined here is very similar in nature 
to [6], however this implementation focuses on the 
lane lines instead of the overall road shape.  

The SVMLIN of Shogun Machine Learning [5] 
was used to create the SVM.  The linear SVM was 
used because it is a two class SVM and it is fast at 
classifying new images. Many of the other SVMs 
that were tried had classification times of 30 
seconds for an image. This is not acceptable for 
real time navigation. The SVM used a Gaussian 
kernel and the image features used were the color 
channels, the luminance, and the chrominance of a 
randomly selected group of pixels from more than 
100 training images. After being trained the 
classifier was then run on a set of test images to 
check the generality of the classifier.  
 Once the SVM had classified all of the pixels in 
an image as in figure 4(a), then the image is 
cleared of unconnected white pixels and eroded 
using a cross structure (figure 4(b)). Next, the 
image was broken up into a left half and a right 
half. These halves then had linear regression run 
on them, which provide the blue lines seen in 
figure 4(c) and 4(d).    

C. Unsupervised Learning  
The first attempt at unsupervised learning was 

using K-means clustering. K-means was passed 

Fig. 3 Supervised Learning  

 
(a) Original         (b) Median Filter 
 

 
(c) Threshold        (d) Width Selection 

 
(e) Least Squares Line 

Fig. 4 Support Vector Machine  

  
(a) SVM Classification      (b) Erosion  

  
(c) Linear Regression on (b)    (d) Linear Regression on both halves 



  

the same features that were passed to the SVM: 
the color channels, the luminance, and the 
chrominance. The K-means algorithm used the 
cosine distance function and only has two clusters. 
The cosine distance function looks at the angle 
between two points; this produces a centroid point 
that is the mean of all the points in the cluster after 
normalizing to unit length. This produced images 
that were not usable at all (figure 5(b)). Better 
results were reached when intensity and edges 
were included in the feature set passed to the 
algorithm. The images produced from the new set 
of features were better, but could not distinguish 
between the white building and the white lines 
(figure 5(f)).  

 

 The second attempt at unsupervised learning 
was using Self-Organizing Maps (SOM). SOM is 
a type of neural network that clusters data based 

on the weighting o f neurons. The set up used had 
2 neurons, the neuron positions were based upon a 
random configuration and the weighting was 
based upon the link distance between the neurons. 
The neurons were trained for 200 iterations over 
the training set of images, each iteration having 
100 steps to reach convergence. These images did 
not contain any marking data, but the SOM learns 
to weight its neuron connections by training over 
an initial data set.  

After either of the unsupervised algorithms ran 
the image they produced was then cleaned of 
single pixels and then eroded using the same cross 
structure as in the SVM case.  Figure 5 shows the 
results of these two methods.  

V. EXPERIMENTS 
A. Data 
	
   The	
   dataset	
  we	
   are	
  working	
   from	
   is	
   based	
  
on	
   what	
   the	
   robot	
   will	
   be	
   seeing	
   in	
   the	
   IGVC	
  
competition.	
   This	
   means	
   that	
   dataset	
   is	
   made	
  
up	
   of	
   flat	
   grassy	
   areas	
   with	
   various	
   obstacles	
  
and	
  white	
  lines	
  no	
  less	
  than	
  six	
  feet	
  apart.	
  The	
  
obstacles	
   are	
   trashcans	
   of	
   different	
   colors	
   and	
  
various	
   construction	
   barricades.	
   The	
   current	
  
dataset	
   includes	
   pictures	
   of	
   white	
   lines	
   from	
  
multiple	
   angles,	
   poorly	
   maintained	
   and	
  
multicolored	
   grass,	
   scattered	
   leaves,	
   and	
  
shadows	
   cast	
   from	
   nearby	
   trees.	
   The	
   training	
  
data	
  set	
  is	
  119	
  images.	
  The	
  test	
  data	
  set	
  is	
  120	
  
images.	
  	
  	
  
	
  

B. Results 
Supervised Learning   
 Train Test 
RMS Distance Error 
(pixels) 33 6308 
   
SVM- Pattern Recognition  
 Train Test 
Observations 59619 59619 
Correct Rate 0.9823 0.9818 
Sensitivity 0.9975 0.9972 
Specificity 0.5182 0.475 
Prevalence 0.9825 0.9825 
Correctly Marked Lanes 84.40% 82% 
   

Fig. 5 Unsupervised Learning  

  
(a) Original           (b) After K-means   

  
(c) Original           (d) After K-means  

  
(e) Original   (f) After K-means with building       

intereference 

  
(g) Original           (h) After SOM  
 



  

Self Organized Maps   
 Train Test 
Observations 119119 119119 
Correct Rate 0.5977 0.5966 
Sensitivity 0.6024 0.601 
Specificity 0.4286 0.4338 
Prevalence 0.9732 0.9733 
   
K-means   
 Test  
Observations 960000  
Correct Rate 0.4379  
Sensitivity 0.4252  
Specificity 0.9878  
Prevalence 0.9774  

 Fig. 6. The percent of correctly marked lines is only noted for the SVM 
because the other two methods had such a low correct rate that it did not 
warrant calculating the percentage. The RMS distance error was calculated 
by taking the distance between a point and a line for eight different points 
between the marked line and the estimated line. Sensitivity is the number of 
correctly marked positive samples divided by the total number of positive 
samples. Specificity is the number of correctly marked negative samples 
divided by the total number of negative samples. Prevalence is the number 
of true positives divided by the total number of samples. 

 
 Overall, the data shows that the SVM was the 
most correct, partly because it’s amazing ability to 
generalize. It worked well across the variation of 
the color of the grass, leaves and flowers. In 
addition, it worked well across mild changes in 
lighting conditions, failing when it became too 
bright, but not when it became dim. The down 
side to the SVM being that if too many training 
cases are used the time to classify becomes very 
high, and thus the lane identification becomes too 
slow for use on a robot in action. However by 
using a linear SVM solves this run time issue. 
 The supervised learning approach works well 
for test cases that were very similar to what it had 
been trained on. However if there was a variation 
in lighting or grass color then this method 
suffered. This show that supervised learning can 
suffer from a lack of generality and thus shouldn’t 
be expected to perform well unless the images 
passed to it are very similar to images that it 
trained on. 
 Lastly, the unsupervised learning showed 
promise and was quite good at classifying some of 
the images, but there were a considerable number 
that did poorly. It worked well on images where 
the line was the brightest thing in the image, but it 

didn’t do very well on images that were closer in 
brightness. The major advantage of the 
unsupervised learning is that no time needs to be 
spent marking data as correct or not. Unsupervised 
learning could be viable, if more image features 
were used.   

VI. CONCLUSION 
 I presented three methods for lane detection all 
based on learning. The best method was the SVM 
due to its ability to generalize and classify in many 
different situations. However both supervised and 
unsupervised learning could do better if given 
more features.  
 In the future I would like to increase the number 
of features used by all three of the algorithms and 
see if this would increase their accuracy. Lastly, I 
would like to include SVM regression for function 
finding so that a better model of the lane can be 
derived from the image.  
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