

Abstract—Autonomous vehicles are becoming a thing of the
present, it’s not just science fiction anymore and one major
task they must be able to do to become fully integrated in
society is lane navigation. Lane navigation is often done with
cameras, although it can be done with LIDAR’s that provide an
intensity reading. In this project, I present three different
approaches to vision based lane navigation using supervised
learning, SVM, and unsupervised learning.

 The three different learning algorithms all return the
same information, that being the location of the lane. The edge
information obtained from the image is then passed to a free
space path planner. This planner will drive towards the largest
open space in front of it that is also in the direction of its goal.

 The experiments carried out are based on the
Minesweeper Nero platform and were conducted at the same
location on several different days.

I. INTRODUCTION
utonomous driving vehicles have become
more and more prevalent ever since the

DARPA Grand Challenge. The first few vehicles
were dependent on precise data provided by
specialty sensors. However since those first few
vehicles the interpretation of noisy data has
become increasingly better and thus opened up a
whole new array of sensors that can be used. The
monocular camera has emerged as one of the top
sensors for autonomous vehicles. From its images
many helpful cues can be derived.

 For example, Figure 1, a bird’s eye view of an
intersection gives a good idea of how many visual
cues we rely upon while driving. There are
crosswalks, stoplights, road dividers and lane lines
to name a few. I will be focusing on the detection
of lane lines in a less structured environment than
what is typically found on roads. Instead of lanes
on roads I will be looking at lanes painted on
grass. This is similar to a road but the overall
texture and color of grass can vary more than
asphalt.

 In this project, I tackled the lane detection
problem through several learning methods to
evaluate which is the best method to use. The

methods used are a supervised learning, support
vector machines, unsupervised learning.

The paper is organized as follows. After
discussing related work in Section II, I briefly
describe the robot that was used for this paper in
Section III. In Section IV I discuss the three
learning methods that were applied. Section V
presents the experimental results of the three
learning algorithms. Lastly, I conclude in section
VI and give a few proposed solutions to problems
that arose.

II. RELATED WORK
Lane navigation is one of the basic problems of

robot navigation and there are many discussions
about the issue in robotics literature. In [3] the
lane is detected in real time by first taking a
threshold of the image and then using an equation
specific to their situation to pick out the lane based
on its perspective geometry. This lacks the
generality needed for use in other platforms and
the algorithm would not be able to perform well if
the camera’s position was changed. In [4] the
robot follows the curvature of a line on the ground
to simulate the following of road curvature.

CS4758: Multiple Learning Methods for Autonomous Lane Navigation

Christopher Barrett Ames, College of Engineering/Independent Study, Sophomore,
cba33@cornell.edu

A

Fig. 1. Bird’s eye view of a typical intersection

 Our approach to supervised learning approach to
lane detection is very similar to the algorithm used
in [3]. The main difference being that we used
supervised learning to determine the parameters of
the algorithm instead of estimating them for our
setup. This was done to increase the robustness of
the algorithm and to fit the parameters of the
algorithm to our specific robot.
 In [6] the curvature of the road is obtained by
using a Support Vector Machine (SVM) to
classify what is part of the road and what is not.
They then broke the image into horizontal
sections. The centroid of the road sections in each
section was found and then SVM regression was
performed on the centroid locations to get the road
curvature. This approach is very similar to the
SVM approach that was used for this project.

III. THE ROBOT
Nero V2.0 is a differential drive robot designed
for competition in the Intelligent Ground Vehicle
Competition (IGVC). The purpose of Nero V2.0 is
to be a software test platform and thus is not
mechanically complex.
 However, the sensor suite that has been
developed on Nero is extensive. Nero has a SICK
LIDAR with a range of 30m, and a color camera
with 45degree field of view, delivered at 15
frames per second. Also, each wheel has three
hall-effect sensors that act as wheel encoders to
provide odometry data. To complement the wheel
encoders and to compensate for any situation in
which the wheels might slip, there is a 6 DOF
IMU paired with GPS that provides hardware
Kalman Filtered position and velocity. Lastly, all
of the sensors are tied together using the ROS
architecture to allow the development of
navigation algorithms that work on multiple
platforms.
 However, for this project the most important
sensor is the camera. It runs at a very low
resolution: 160x120. This is to keep the bandwidth
down and to get rid of any fine edges. Placement
of the camera can be seen in figure 2.

IV. LANE DETECTION METHODS
The goal of this work is to learn the pattern or

shape that best describes the lane lines in an
image. The following methods all work on the
same basic algorithm. First, classify pixels as part
of the lane. Next, fit a line or a curve to the pixels
that were classified as lane lines. Lastly, the line is
passed to the free space follower that is
implemented on the robot.

A. Supervised Learning
The lanes are detected using the same approach

as in [3]. First, the image is filtered using a median
filter (figure 3(b)) to remove any outlier noise in
the image. Then a threshold is applied to the
image to make sure that only things that are bright
and white are included. Taking the threshold of
the image leaves a speckled image as in figure
3(c). Then each line of the speckled image is
scanned to determine the width of contiguous
segments of white in the binary image (figure
3(d)). If the width of the segment is approximately
the same as an expected width of the lane then the
contiguous white segment is kept in the image,
otherwise it is removed. The expected width is
calculated using parameters learned from more
than 100 training images for equation 1.

€

width = initial − row
h1

+
row
h2

⎛

⎝
⎜

⎞

⎠
⎟ (1)

Fig. 2. Nero V2.0

 Once all of the horizontal lines have been
scanned there is a group of pixels left that are
considered to be part of the lane line. A linear
regression is performed on the lines to provide the
x-intercept and slope of the line (figure 3(e)).
 The supervised learning process consisted of
labeling all of the lanes in the image, detecting the
lines using the stated algorithm, and then
determining the error of the estimated line. The
lines were identified by their x-intercept, slope and
their angle. The angle and slope were both
recorded because as the line nears 90 degrees the
slope goes to infinity. Several error metrics were
tested: intercept error, angle error, and the distance
between 8 x positions for the two lines.
 The parameters that had to be learned were
initial, h1 and h2 of (1). They were learned using a
brute force algorithm followed by a gradient
descent. The brute force algorithm was very rough
and was implemented to make sure that the

gradient descent did not get trapped in a local
minimum. The gradient descent was run
afterwards to refine the parameters.

B. Support Vector Machine
For this approach the Support Vector Machine

(SVM) was used to perform pattern recognition.
The method outlined here is very similar in nature
to [6], however this implementation focuses on the
lane lines instead of the overall road shape.

The SVMLIN of Shogun Machine Learning [5]
was used to create the SVM. The linear SVM was
used because it is a two class SVM and it is fast at
classifying new images. Many of the other SVMs
that were tried had classification times of 30
seconds for an image. This is not acceptable for
real time navigation. The SVM used a Gaussian
kernel and the image features used were the color
channels, the luminance, and the chrominance of a
randomly selected group of pixels from more than
100 training images. After being trained the
classifier was then run on a set of test images to
check the generality of the classifier.
 Once the SVM had classified all of the pixels in
an image as in figure 4(a), then the image is
cleared of unconnected white pixels and eroded
using a cross structure (figure 4(b)). Next, the
image was broken up into a left half and a right
half. These halves then had linear regression run
on them, which provide the blue lines seen in
figure 4(c) and 4(d).

C. Unsupervised Learning
The first attempt at unsupervised learning was

using K-means clustering. K-means was passed

Fig. 3 Supervised Learning

(a) Original (b) Median Filter

(c) Threshold (d) Width Selection

(e) Least Squares Line

Fig. 4 Support Vector Machine

(a) SVM Classification (b) Erosion

(c) Linear Regression on (b) (d) Linear Regression on both halves

the same features that were passed to the SVM:
the color channels, the luminance, and the
chrominance. The K-means algorithm used the
cosine distance function and only has two clusters.
The cosine distance function looks at the angle
between two points; this produces a centroid point
that is the mean of all the points in the cluster after
normalizing to unit length. This produced images
that were not usable at all (figure 5(b)). Better
results were reached when intensity and edges
were included in the feature set passed to the
algorithm. The images produced from the new set
of features were better, but could not distinguish
between the white building and the white lines
(figure 5(f)).

 The second attempt at unsupervised learning
was using Self-Organizing Maps (SOM). SOM is
a type of neural network that clusters data based

on the weighting o f neurons. The set up used had
2 neurons, the neuron positions were based upon a
random configuration and the weighting was
based upon the link distance between the neurons.
The neurons were trained for 200 iterations over
the training set of images, each iteration having
100 steps to reach convergence. These images did
not contain any marking data, but the SOM learns
to weight its neuron connections by training over
an initial data set.

After either of the unsupervised algorithms ran
the image they produced was then cleaned of
single pixels and then eroded using the same cross
structure as in the SVM case. Figure 5 shows the
results of these two methods.

V. EXPERIMENTS
A. Data
	
 The	
 dataset	
 we	
 are	
 working	
 from	
 is	
 based	

on	
 what	
 the	
 robot	
 will	
 be	
 seeing	
 in	
 the	
 IGVC	

competition.	
 This	
 means	
 that	
 dataset	
 is	
 made	

up	
 of	
 flat	
 grassy	
 areas	
 with	
 various	
 obstacles	

and	
 white	
 lines	
 no	
 less	
 than	
 six	
 feet	
 apart.	
 The	

obstacles	
 are	
 trashcans	
 of	
 different	
 colors	
 and	

various	
 construction	
 barricades.	
 The	
 current	

dataset	
 includes	
 pictures	
 of	
 white	
 lines	
 from	

multiple	
 angles,	
 poorly	
 maintained	
 and	

multicolored	
 grass,	
 scattered	
 leaves,	
 and	

shadows	
 cast	
 from	
 nearby	
 trees.	
 The	
 training	

data	
 set	
 is	
 119	
 images.	
 The	
 test	
 data	
 set	
 is	
 120	

images.	
 	
 	

	

B. Results
Supervised Learning
 Train Test
RMS Distance Error
(pixels) 33 6308

SVM- Pattern Recognition
 Train Test
Observations 59619 59619
Correct Rate 0.9823 0.9818
Sensitivity 0.9975 0.9972
Specificity 0.5182 0.475
Prevalence 0.9825 0.9825
Correctly Marked Lanes 84.40% 82%

Fig. 5 Unsupervised Learning

(a) Original (b) After K-means

(c) Original (d) After K-means

(e) Original (f) After K-means with building

intereference

(g) Original (h) After SOM

Self Organized Maps
 Train Test
Observations 119119 119119
Correct Rate 0.5977 0.5966
Sensitivity 0.6024 0.601
Specificity 0.4286 0.4338
Prevalence 0.9732 0.9733

K-means
 Test
Observations 960000
Correct Rate 0.4379
Sensitivity 0.4252
Specificity 0.9878
Prevalence 0.9774

 Fig. 6. The percent of correctly marked lines is only noted for the SVM
because the other two methods had such a low correct rate that it did not
warrant calculating the percentage. The RMS distance error was calculated
by taking the distance between a point and a line for eight different points
between the marked line and the estimated line. Sensitivity is the number of
correctly marked positive samples divided by the total number of positive
samples. Specificity is the number of correctly marked negative samples
divided by the total number of negative samples. Prevalence is the number
of true positives divided by the total number of samples.

 Overall, the data shows that the SVM was the
most correct, partly because it’s amazing ability to
generalize. It worked well across the variation of
the color of the grass, leaves and flowers. In
addition, it worked well across mild changes in
lighting conditions, failing when it became too
bright, but not when it became dim. The down
side to the SVM being that if too many training
cases are used the time to classify becomes very
high, and thus the lane identification becomes too
slow for use on a robot in action. However by
using a linear SVM solves this run time issue.
 The supervised learning approach works well
for test cases that were very similar to what it had
been trained on. However if there was a variation
in lighting or grass color then this method
suffered. This show that supervised learning can
suffer from a lack of generality and thus shouldn’t
be expected to perform well unless the images
passed to it are very similar to images that it
trained on.
 Lastly, the unsupervised learning showed
promise and was quite good at classifying some of
the images, but there were a considerable number
that did poorly. It worked well on images where
the line was the brightest thing in the image, but it

didn’t do very well on images that were closer in
brightness. The major advantage of the
unsupervised learning is that no time needs to be
spent marking data as correct or not. Unsupervised
learning could be viable, if more image features
were used.

VI. CONCLUSION
 I presented three methods for lane detection all
based on learning. The best method was the SVM
due to its ability to generalize and classify in many
different situations. However both supervised and
unsupervised learning could do better if given
more features.
 In the future I would like to increase the number
of features used by all three of the algorithms and
see if this would increase their accuracy. Lastly, I
would like to include SVM regression for function
finding so that a better model of the lane can be
derived from the image.

ACKNOWLEDGMENT
The author would like to thank Cornell

Minesweeper for allowing me to use their
platform and for their technical support. In
addition, I’d like to thank Professor Saxena for his
guidance on the direction and form this project
should take.

REFERENCES
[1] Jeff Michels, Ashutosh Saxena, Andrew Y. Ng. High Speed Obstacle

Avoidance using Monocular Vision and Reinforcement Learning,
Proceedings of the Twenty-first International Conference on Machine
Learning (ICML), 2005

[2] Eric Royer, et al. Outdoor autonomous navigation using monocular
vision, International Conference on Intelligent Robots and Systems,
2005

[3] Chung-Yen Su and Gen-Hau Fan. An Effective and Fast Lane
Detection Algorithm, Advances in Visual Computing, 2008

[4] Yi Ma, Jana Kovseck, and Shankar Sastry. Vision guided navigation
for a nonholonomic mobile robot, The Confluence of Vision and
Control, 1998

[5] S.Sonnenburg, G.Raetsch, C.Schaefer and B.Schoelkopf, Large Scale
Multiple Kernel Learning.Journal of Machine Learning
Research,7:1531-1565, July 2006, K.Bennett and E.P.-Hernandez
Editors.

[6] Hao Zhang, Dibo Huo, Zeki Zhou. Novel Lane Detection Algorithm
Based on Support Vector Machine, Progress in Electromagnetics
Research Symposium, August 2005, pp.390-394

